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Abstract 

In this paper we introduce by means of examples a new technique 
for formulating compact (i.e. polynomial-size) LP relaxations in place 
of exponential-size models requiring separation algorithms. In the 
same vein as a celebrated theorem by Grotschel, Lovasz and Schri- 
jver, we state the equivalence of compact separation and compact 
optimization. Among the examples used to illustrate our technique, 
we introduce a new formulation for the Traveling Salesman Problem, 
whose relaxation we show equivalent to the subtour elimination relax- 
ation. 
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1 Introduction 

In the past few decades, Linear Integer Programming has emerged as perhaps 
the most powerful technique for solving exactly difficult combinatorial prob- 
lems. The approach relies on formulating a problem as the minimization 
or maximization of a linear function over integer variables satisfying a set 
of linear constraints. The Linear Programming (LP) Relaxation, consisting 
in optimizing without requiring the variables to be integer, is polynomially 
solvable, and its value is used as a bound in an implicit enumeration (branch 
and bound) scheme. A formulation is as successful as the strength of its LP 
bound. That is, if the value of the objective function over the relaxation is 
close to the value over the integers, then the bound, and hence the pruning 
of the search space, will be effective. The choice of a tight formulation is 
therefore the key to an effective solution. Sometimes the tightest formula- 
tions require a very large (exponential) number of constraints or variables. A 
fundamental paper by Griitschel, Lov&sz and Schrijver ([5]) states that even 
if these LPs have an exponential size, this does not forbid their solvability in 
polynomial time, provided that separation can be done in polynomial time. 
Separation consists in solving the LP with only a polynomial subset of the 
constraints, and then checking if any of the -exponentially many- constraints 
that were left out is violated by the optimal solution. If this is the case, one 
such constraint is found and added to the current LP, which is then solved 
again. By using the ellipsoid method as the LP solver, Grotschel, Lovasz and 
Schrijver showed that the above procedure converges in polynomial time. 

In this work we show how oftentimes the whole process of iterating the 
solution of several Linear Programs and the combinatorial algorithm for sep- 
aration can be replaced by the use of a suitable, single, polynomial-size (or, 
as we shall call it, compact) Linear Program. This idea is not only inter- 
esting from a theoretical point of view, but has also some useful practical 
applications. For instance, many of the commercially available integer pro- 
gramming solvers cannot be programmed or linked to user-developed code, 
but rely instead on the solution of a given input formulation by means of 
some general procedure (typically, a built-in branch and bound code en- 
hanced by some general-purpose cuts). In particular, focusing on modeling 
the problem with the right variables and constraints, and then letting the 
package take care of the solution, is the approach typically used by engineers 
working in industry, while more sophisticated applications are developed by 
researchers in the academic world. If one gives up the possibility of writing 
a procedure which alternates separation and LP-solution, he could be forced 
to use inferior (weaker) formulations than others with exponentially many 
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constraints. By using our approach, however, the separation algorithm can 
be ‘Lhardcoded” into a polynomial number of new variables and constraints, 
leading to a “static” LP-relaxation as tight as the “dynamic” one, requiring 
separation on-line. 

Another aspect worth mentioning is the following. Sometimes, the opti- 
mization undergoes long runs of LP solution/separation in which the new- 
found constraints affect only slightly the objective function. At the end, a 
very large number of runs may have been required, resulting in a very large 
running time. The contact map overlap problem (third example in this pa- 
per) is an example of such behavior. When this is the case, it is very possible 
that the solution of a single LP (altough bigger) may be faster than that 
on many LPs. Furthermore, after years of refinements, state-of-the-art al- 
gorithms are today known for the typical separation problems, which are 
usually famous combinatorial problems such as shortest path and maximum 
flow. Hence, there is probably not much to be expected in practical improve- 
ments on those algorithms. However, many developments and increased in- 
terest have recently been shown in speeding up traditional as well as new, 
polynomial and non-polynomial, procedures for Linear Programming. Any 
such improvements would translate in the speed-up of the compact version 
of the relaxation vs. the one based on separation. 

Finally, from a theoretical standpoint, it is interesting to note that, al- 
though the issue is not usually addressed, polynomial convergence of the sep- 
aration method relies on the ellipsoid algorithm for solving the LPs, which is 
in practice never used. Our approach, however, does only require the use of 
any polynomial algorithm for Linear Programming, such as the now widely 
available interior-point methods. 

2 Optimization and Separation 

Let 

(IV min{ca: 1 Ax 4 b, x E 2:) (1) 
be a formulation with an exponential number of constraints for an integer 
programming problem. Let I be the index set for the rows of A. In a very 
general way, we can usually partition the rows of A into two subsets: Ip, a 
family with a polynomial number of constraints, and le, a family with an 
exponential number of constraints. For instance, in the Traveling Salesman 
Problem, Ip would consist of the degree constraints, while I, indexes the 
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subtour-elimination constraints. We can then rewrite the problem as 

(IV min c x 
X&Z; 

(2) 

subject to 
six 2 bi i E Ip (3) 
six > bi i E I,. (4) 

Let us call Px the polyhedron defined by (3)) (4) and x 2 0. An inequality 
ax 2 b is valid for Px if is satisfied by each x E P,. In [5], Grotschel, 
Lovasz and Schrijver show that (LP), the LP-relaxation of (IP), is solvable 
in polynomial time provided that the following separation problem is solvable 
in polynomial time: 

Separation: Given a vector x* E R”,, with uix* > bi for i E Ip, determine if 
x* E Px or find a violated valid inequality. 

The proof in [5] relies on the ellipsoid method for Linear Programming. 
Based on this technique, several works have appeared over the years using 
tight LP-relaxations with an exponential number of constraints. Further- 
more, by taking the dual of an LP-relaxation, the same technique can be 
applied for solving models with an exponential number of variables, leading 
to an approach known as branch-and-price. A separation problem is almost 
invariably an optimization problem, whose optimal value is used to deter- 
mine if x* E P,, and whose optimal solution identifies a violated inequality. 
Separation problems are typically solved by well-known polynomial combi- 
natorial algorithms, such as shortest path, maximum flow, minimum cost 
flow, and matching, bipartite and non. With the notable exception of the 
nonbipartite matching, we noticed that the vast majority of these separation 
algorithms can also be phrased and solved as Linear Programs. Our main 
idea is to replace the exponentially many constraints in (4) with a polynomial 
family IA of new constraints, in the variables x and y (y being a new set of 
polynomially many variables), which essentially represent an LP formulation 
for the separation problem. That is, we suitably Z$ the problem (LP) in the 
(x, y) space, so that x*, the projection on the x-space of an optimal solution 
(x*, y*), does not violate any of the constraints originally in (4). We therefore 
obtain the following compact formulation: 

(CW min cx 
zfR”t 

(5) 
subject to 

six > bi i E Ip (6) 
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a:x + ary 2 bi i E I;. (7) 
This formulation has now a polynomial number of constraints and can be 

solved in polynomial time. We call PZY the polyhedron, in the (x, y) space, 
defined by (6)) (7) and x 2 0. 

We now come to define the concepts of compact separation and compact 
optimization, and prove that they are equivalent. Given the formulation 
(LP), with an exponential number of constraints defining the polyhedron Pz, 
compact optimization is the existence of a polynomial-size Linear Program, 
i.e. (CLP), defining a polyhedron Pzv whose projection on the x-space is 
equal to P,. Compact separation is, loosely speaking, the possibility of stat- 
ing a separation algorithm for (LP) as a polynomial-size Linear Program. 
More precisely, we say that (LP) has a compact separation if there exist a 
matrix D of size N’ x (n + 1+ N”) and a vector d of size N’ x 1, such that 

1. N’ and N” are polynomial in n. 

2. Let a vector x* E RF, with six* 2 bi for i E Ip, be given. Then the 
Linear Program (SEP), in the variables (a E R”, b E R, w E RN”), 
has an optimal value smaller than 0 if and only if x* violates some 
constraints in 1,. In this case, a’x 2 b’ is a violated valid inequality, 
where (a’, b’, ~0’) is the optimal solution of (SEP). 

(SW minx*a-1-b (8) 

subject to 

We have the following 

Theorem 1 For an exponential-size formulation (LP), compact optimizu- 
tion is possible if and only if compact separation is possible. 

Proof (if:) Assume compact separation is possible. Since the optimal value 
of (SEP) is equal to the optimal value of its dual, we formulate the dual and 
force its value to be nonnegative (inequality (13)). This would correspond 
to have all inequalities in 1, satisfied. We therefore obtain the following 
constraints, which are the family ‘I, that, added to Ip, yields a compact 
relaxation of (IP). Note how x was replaced for x*. 
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yDa<x (10) 

YDb<l (11) 

yDwL0 (12) 

ydlo (13) 

where D = (DaIDdDw). 
(only if:) Assume now that (LP) has a compact optimization like (CLP). 

We can rewrite the constraints of (CLP) as 

for some matrix B = (&/BY) and vector g. Let P, be the polytope 
defined by (LP), which is also the projection of the polytope defined by (14) 
on the z-space. We are now going to describe a Linear Program that solves 
the separation problem. Let x* E R$ be given. x* E P, iff (x*, y*) is feasible 
for (14) for some y*, i.e. the following Linear Program has a nonnegative 
optimum: 

maxA (15) 

subject to 
Bzx* + B,y - g 1 Xl (16) 

where 1 is a vector of value 1 in each component. We can rewrite the 
constraints (16) as 

(1 ( - B3) . <_ Bzx* - g. (17) 

By taking the dual of (15), (17), and introducing the new variables a E R, 
and b E R, we have that x* E P, iff the following LP has nonnegative optimal 
value: 

subject to 

E. ax* -b (18) 

wl- wB, = (1 1 0.. .O) (19) 

a=wB, (20) 

b=wg. (21) 
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If this LP has negative optimum, then the optimal solution (a’, b’, w’) 
identifies a valid inequality for P, violated by x*. To see this, note that, 
since w’ > 0 and, from (19), w’l = 1, then w’(Bzx + B,y - g) 2 0 is a valid 
inequality for (CLP). But, from (19)) w’By = 0 and hence the inequality 
w’Bzx > w’g, i.e. a’x 2 b’, is valid for Pz; furthermore, it is violated by 
x*. Hence, (X3)-(19) constitute a compact LP formulation of the separation 
algorithm, and the theorem is proved. 0 

Note that, although this is not required for the validity of our theorem, 
it can be proved by projection theory (see Nemhauser and Wolsey [S]) that 
the inequality found by the compact separation algorithm is a maximally 
violated one. 

3 Examples 

3.1 The Minimum Routing Cost Tree Problem 

The Minimum Routing Cost Tree (MRCT), [6, 4, 91, is a network-design 
problem which can be stated as follows: Given an undirected graph G = 
(V, E) with nonnegative lengths on the edges, find a spanning tree such that 
the sum over all pairs of vertices of the length of the path connecting them 
in the tree is minimized. Fischetti, Lancia and Serafini in [4] describe an 
integer programming formulation with an exponential number of variables, 
one for each possible path between two nodes. The model is then solved by 
Branch-and-Price, and the pricing subroutine is a shortest path algorithm 
for nonnegative lengths. We start illustrating our technique with this exam- 
ple for two reasons. First, the MRCT shows how also a primal formulation, 
with an exponential number of variables, can be modeled as a compact opti- 
mization problem. The answer, of course, is to turn the exponentially many 
variables into exponentially many constraints, by means of the dual problem. 
To the dual, we then apply our technique. Secondly, we are going to use the 
MRCT problem to derive a new IP formulation of the TSP, as described in 
the next section. 

Let [VI = n, lE/ = m, and V = (1,. . . ,n}. The length of an edge 
e = {i, j} will be denoted as d,. A pair of vertices is an edge of the complete 
graph K,, = (V, II). For a spanning tree T and a pair {i, j} E II of vertices, 
d(i, j, T) is the length of the unique path connecting i and j in T. The routing 
cost of T is defined as rc(T) := C {2,31En d(i, j, 2’). We want to determine a 
spanning tree of minimum routing cost. 

For each pair h = {i, j} E II, we denote by ph the set of simple paths in 
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G between i and j. The set of all paths in G will be denoted by P. Since an 
edge is also a path (of cardinality 1)) we have E ,G P. For each path P E P, 
we let dp := CeEP d,. 

The MRCT problem is formulated as an integer program with decision 
variables xp, for P E P, used to select a path between each pair of vertices. 
The constraints are such that, in a feasible solution, the set {e E E I x, = 1) 
defines a tree. The LP-relaxation is the following: 

(MRCT) min 
SF? c dwp 

PEP 

subject to 
(22) 

% XP 2 1 hell (23) 
PEPh 

c XP I xe 
PEPh:P3e 

eEE,hEII-{e} (24) 

c x,=72-1. (25) 
eEE 

The model has an exponential number of variables. In order to use our 
technique, we first consider its dual. We define the following dual variables, 
associated to the constraints (23), (24), and (25) respectively: uh, for h E II; 
~,h, for e E E, h E II - {e}; and w. The dual of (MRCT) is the following: 

cDMRCT) ,h,F$h,,, c(uh- c f&h)+ (n-1) W 
-7 - hG-I PEPh-{h} 

subject to 
(26) 

Ue + c veh + W I de eEE (27) 
MII-{e} 

uh - C veh < dP h E II, P E ph - {h}. (28) 
eEP 

A variable xp, (PI 2 2 with negative reduced cost in (MRCT) corresponds 
to a violated dual constraint (28). For a fixed h = {i, j}, define dk = veh + de 
for all e E E. Since constraints (28) can be rewritten as ?& 2 d’p for all 

‘h E II, P E ph - {h}, the pricing algorithm in [4], consists in finding the 
shortest i-j path in E - {h}, with respect to the costs d’, and checking if it 
is shorter than uh. 
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The shortest path algorithm for nonnegative lengths can be modeled as 
a Linear Program as follows. For each pair h = (i, j}, i < j, we introduce a 
variable yt for each u E V, representing the length of the shortest i-u path 
given d’ lengths. We have then the following constraints: 

yf = 0 h={i,j} EII, i<j (29) 

$ > uh h={i,j}EII, i< j (30) 

Y,h 5 Y,” + v{u,w}h + d{u,vj .hEII, {u,v}~E. (31) 

By substituting constraints (29), (30) and (31) for constraints (28), we 
obtain a compact formulation of (DMRCT). 

3.2 The Traveling Salesman Problem 

The (symmetric) traveling salesman problem is perhaps the most famous 
combinatorial problems in the literature. As before, we are given an undi- 
rected graph G = (V, E) with nonnegative lengths de on the edges. A humil- 
ton tour is a cycle visiting each node in V exactly once. We want to determine 
the hamilton tour of smallest length. 

3.2.1 The subtour-elimination relaxation 

The standard IP formulation for the STSP problem is based on binary vari- 
ables XC(~,~J for each edge {i, j} E E. For a subset of vertices S z V, let 
6(S) denote the set of edges with one endpoint in S and one out of S. The 
O(n) degree constraints (33) force each node to be entered and exited exactly 
once by a feasible solution. However, without the 0(2n) subtour-ekminution 
constraints (34), an integer solution could consist of a set of disjoint cycles. 

(TSP - SE) min c O<x<l %,A X{id 
{WE-E 

(32) 
subject to 

c X{i,j) = 2 iEV (33) 
{&A E b({il) 

c X:(&j} 2 2 0#Scv. (34 
{W E b(S) 

The standard way of separating inequalities (34) is via the solution of 
O(n) maximum flow problems (see, e.g., Cook et al. [3]). Namely, for a 
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fractional solution x*, direct each edge {i, j} in the two possible ways creating 
the arcs (i, j) and (j, i), each with capacity xTijl. Let A be the set of arcs 
created this way. Since in (34) it is enough to consider only sets S # V such 
that 1 E S, there are no violated constraints (34) if and only if the maximum 
flows from 1 to each other vertex in V has value at least 2. It is well known 
that the maximum flow problem can be modeled as a Linear Program. To 
this end, define variables yGlj, to represent the flow from node 1 to node u, 
traveling on the arc (i, j), for all u E V - (1) and (i, j) E A. We have then 
the following constraints (35)) (36)) (37) w ic can be substituted for (34) h’ h 
in (TSP-SE) to obtain a compact formulation of the Symmetric Traveling 
Salesman Problem equivalent to the subtour-elimination relaxation. 

Yi”,,) + YZ,i) L “{i,j} UEV-{l},{i,j}~ E (35) 
c yth - (jLxAYt,i) = 0 uEV-{l}, iEV-{l,u} (36) 

(i,jkA 4 

c &) - c Yb,l) 2 2 u E v - (1). 
(UW (j,l)EA 

(37) 

3.2.2 A new IP formulation 

As for the MRCT problem, we define a variable xp for each simple path P in 
G. The following constraints force the set {e E Elx, = 1) to be a hamilton 
tour, and xp = 1 iff P is a path contained in this cycle. 

(TSP - PF) 

subject to 

min c dexe 
eEE 

(38) 

c XP 2 2 hEl-I (39) 
PEPh 

c XP 2 G? 
PEPh:p3e 

eE E,hElI--{e} (40) 

c 2, = n (41) 
eEE 

Xe E {O,l}, XP 2 0 eEE,PEP-E. (42) 
We call this formulation for the STSP the path formulation. If we con- 

sider the LP-relaxation of the path formulation, it can be solved, similarly 
to the MRCT problem in [4], by using the shortest path algorithm as the 
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pricing subroutine. By taking its dual, we can obtain, as in section 3.1, a 
compact formulation of the LP relaxation for this new model of the STSP. 
The strength of this model, however, turns out to be exactly the same as 
that of the subtour-elimination relaxation. 

Theorem 2 The LP-reluxution of the path formulation and subtour elimi- 
nation have the same value. 

Proof Call .ZS the value of the (LP-relaxation of) the subtour elimination 
and zp the value of the path formulation. By using the Flow Decomposition 
Theorem (Ahuja et al., [l]), stating that any 21-v flow is the sum of a set of 
u-v paths, a solution of (TSP-SE) can be mapped into a solution of (TSP- 
PF) of the same value, and conversely. Let x,, e E E, be a solution feasible 
for (TSP-SE). Since x, is feasible for all constraints (34), the maximum flow 
from each u E V to each w E V in the network with capacities x, is at least 2, 
and, by the flow decomposition theorem, there are paths P, with values that 
we denote by xp, adding up to at least 2. Furthermore, by adding (33) for all 
nodes we get (41). So, (xe, xp) is feasible for (TSP-PF) and hence zp < ZS. 
Similarly, given a solution (xe, xp) to (TSP-PF), it is not difficult to see that 
its projection x,, e E E, is feasible for (TSP-SE), and hence zs 5 zp. o 

By some preliminary testing, it appears that the compact formulation for 
(TSP-SE) is solved faster (by using CPLEX) than that for (TSP-PF). How- 
ever, (TSP-PF) may lead to a stronger bound, by replacing constraints (39) 
with 

c xp=2 h E Il. (43) 

The problem in doing so, is that the pricing algorithm would become the 
shortest path in a graph with positive and negative-length edges. We have 
not been able to prove that there would not be negative-length cycles, and 
so the relaxation with = 2 in place of 2 2 may in fact be NP-complete to 
optimize. Note that changing 2 2 with = 2 in (TSP-SE) would not lead to 
a valid formulation of the STSP. 

3.3 Non-crossing Matchings 

Given two ordered sets VI = {VI,. , . , v,,) with vr < . . . < v,, and Vz = 
{ Ul,***, u,,} with ur < . . . < u,,, a non-crossing matching of VI and Vz is a 
matching in the complete bipartite graph B = (Vl UV$, Vl x Vs) such that, if 

12 



zli is matched with uj and vk is matched with uh, then either Ic < i and h < j 
or Ic > i and h > j. For simplicity, we can assume VI = Vz = { 1, . . . , n} and 
introduce variables zij such that zij = 1 iff vi is matched with uj. Then, the 
non-crossing constraints are of the form 

xij + xhk 5 1 1 2 i 5 h 5 n, 1 5 k 5 j 5 n, {i, j} # {h, k}. (44) 

If we draw B in the customary way, with VI on the left and V, on the right, 
a noncrossing matching can be seen as a set of non-crossing line segments 
between VI and Vz. Denote a generic such line by [i, j]. If G’ the graph in 
which each node corresponds to a line of B and two nodes are connected if 
the lines do not cross, a set Q of lines which are all mutually crossing is a 
clique in G’. Hence, we can strengthen inequalities (44) to (45), called clique 
inequalities: 

c Xij 2 1 for all Q cliques in G’. (45) 
P$cQ 

Non-crossing matchings appear as part of the model for many combinato- 
rial optimization problems. In particular, in the field of Molecular Computa- 
tional Biology, many problems require to align some genetic data, like DNA 
or protein sequences, or S-dimensional folds of proteins. In an alignment, 
given two objects (e.g., DNA fragments) comprised of linear arrangements 
of simpler units (e.g., nucleotides), we seek a mapping of some units of one 
object into the other, which respects the linear orderings. Lenhof, Reinert, 
and Vingron [7] give an integer programming formulation for RNA multiple 
sequence alignment, which contains non-cross&n matchings as part of the 
model. Carr, Lancia and Istrail [2], use non-crossing matching to model some 
of the variables for an IP formulation of the Contact Map Overlap problem. 
A contact map is a representation of the 3D folding of a protein as a graph, in 
which each amino acid corresponds to a vertex, and there is an edge between 
two amino acids if their distance is smaller than a given threshold when the 
protein is folded. Given two contact maps, the contact map overlap problem 
consists in finding a non-crossing matching between the amino acids which 
identifies the largest common subgraph in the two maps. 

Carr, Lancia and Istrail in [2] prove that G’ is a perfect graph, and give 
an O(n2) algorithm for separating the clique inequalities (45). The details of 
the algorithm are somewhat complex and can be found in [2], while here we 
will only sketch the main ideas. What is most interesting in the contest of 
the present paper, however, is the fact that this separation algorihtm, as well 
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as many others in the literature, is based on dynamic programming. Since 
dynamic programming can always be thought of as a shortest path problem 
on a layered graph, it can be cast as an LP, and hence is suitable for our 
technique of compact formulations. 

A triangle in B is a set of lines originating from a common point u, on 
one side of B (i.e., VI or V4, and ending in a range i, i + 1, . . . , j on the 
other side. Let al < uz < . . . < ok E VI and cl > c2 > . . . > ch E VZ, with 
Ih- kl 2 1. Connecting al to cl to u2 to cz..., we obtain a “zigzag” path P in 
B (similarly, the path could start from cl, to al, to cz,...). It is shown in [2] 
that the union of the triangles with tip in q and base ai, ai + 1, . . . , ui+r or tip 
in oj and base cj, cj + 1, . . . , cj-1 is a clique in B, and all cliques are of this 
form. Further, for a maximal clique it is always al = 1, ok = n and cl = n, 
oh = 1. Orient each line [i, j] E B, i E VI and j E V2, in both ways, obtaining 
the arcs (i, j) and (j, i). Then arc lengths Z+(i, j) and Z+(j, i) can be defined 
(see [2] for details) as suitable sums of some x-variables, depending on i and 
j, so that the length Z+(ar, cl) + Z+(cl, a2) + Z-,(uz, ~2) + . . . of a zigzag path 
is equal to the x-value of the clique it individues. Hence, to find the most 
violated clique inequality, we look for the longest zigzag path. Such path can 
be found by solving the following dynamic programming relations: 

V(i,j, -+) = max{Z,(i, j) + V(i + 1, j, t), V(i, j + 1, +)} (46) 

V(i, j, t) = max{Z,(j, i) + V(i, j + 1, +), V(i + 1, j, t)} (47) 

where V(i, j, +) is the length of a longest zigzag path starting at i E VI 
and using nodes of V2 only within n- j+l, n-j, . . . ,2,1. Similarly, V(i, j, t) 
is the length of a longest zigzag path starting at n - j + 1 E Vz and using 
nodes of VI only within i, i + 1,. . . , n. 

The boundary conditions needed are the values of V(n, n, +) = Z+(n, 1) 
and V(n, n, t) = Z,(l, n). The recurrence can be solved backwards from 
(n, n), in time O(n2). At the end, the maximum between V(l, 1, +) and 
V(1, 1, t) is the length of the longest zigzag path. 

Define variables y$ and 9%; to represent V(i, j, -+) and V(i, j, t) respec- 
tively. We have constraints 

Y L = L(n, 1) (48) 

Y + nn = Z+(l,n) (49) 

Yz 2 L(O) + YLl,j i E VI, j E V2,i < n (50) 

Y; 2 YG,l i E VI, j E V&i < n (51) 
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Y; 2 L-(.6 i> + Y%$+~ i E l&j E V2,j <n (52) 

Y$ 2 Yt:l,j i E VI, j E V&j < n (53) 

Ylt 2 1 (54 

Yl’; I 1 (55) 

Constraints (54) and (55) force all zigzag paths to have length less than 
one. Constraints (48) and (49) are the boundary conditions, while (50), 
(51) and (5% (53), implement (46) and (47) respectively. Together, con- 
straints (48)-(55) can be replaced for the exponentially many clique inequal- 
ities (45) for a compact formulation in all LPs which have non-crossing 
matchings as part of the model. 

4 Conclusions 

This paper introduces a formal setting, compact optimization and compact 
separation, for the formulation of polynomial-size LP relaxations of integer 
programming models with an exponential number of constraints or variables. 
We have shown by means of some examples how this can be done. Most 
known exponential IP formulations can be cast this way. However, there is a 
major exception: we have not been able to formulate a compact separation 
of the weighted, non-bipartite, matching problem, and in fact we conjec- 
ture that no such compact separation is possible. This is unfortunate, since 
otherwise it is possible that a strong theorem can be proved, analogous to 
Grijtschel, Lovasz and Schrijver, that is, optimization is possible if and only 
if compact separation is possible. In a sense, this would also have provided 
a simpler proof of Grijtschel, Lov&sz and Schrijver’s theorem. 

One of the examples presented here, introduces the path formulation of 
the symmetric TSP. We have shown how its LP relaxation has the same value 
of the subtour-elimination relaxation. We intend to investigate on a possible 
tightening of the path formulation which may lead to a better bound. 
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